Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Entropy (Basel) ; 25(10)2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37895588

RESUMO

Noise suppression algorithms have been used in various tasks such as computer vision, industrial inspection, and video surveillance, among others. The robust image processing systems need to be fed with images closer to a real scene; however, sometimes, due to external factors, the data that represent the image captured are altered, which is translated into a loss of information. In this way, there are required procedures to recover data information closest to the real scene. This research project proposes a Denoising Vanilla Autoencoding (DVA) architecture by means of unsupervised neural networks for Gaussian denoising in color and grayscale images. The methodology improves other state-of-the-art architectures by means of objective numerical results. Additionally, a validation set and a high-resolution noisy image set are used, which reveal that our proposal outperforms other types of neural networks responsible for suppressing noise in images.

2.
Entropy (Basel) ; 25(8)2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-37628207

RESUMO

In the field of image processing, noise represents an unwanted component that can occur during signal acquisition, transmission, and storage. In this paper, we introduce an efficient method that incorporates redescending M-estimators within the framework of Wiener estimation. The proposed approach effectively suppresses impulsive, additive, and multiplicative noise across varied densities. Our proposed filter operates on both grayscale and color images; it uses local information obtained from the Wiener filter and robust outlier rejection based on Insha and Hampel's tripartite redescending influence functions. The effectiveness of the proposed method is verified through qualitative and quantitative results, using metrics such as PSNR, MAE, and SSIM.

3.
Sensors (Basel) ; 23(12)2023 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-37420648

RESUMO

This paper is focused on the use of radio frequency identification (RFID) technology operating at 125 kHz in a communication layer for a network of mobile and static nodes in marine environments, with a specific focus on the Underwater Internet of Things (UIoT). The analysis is divided into two main sections: characterizing the penetration depth at different frequencies and evaluating the probabilities of data reception between antennas of static nodes and a terrestrial antenna considering the line of sight (LoS) between antennas. The results indicate that the use of RFID technology at 125 kHz allows for data reception with a penetration depth of 0.6116 dB/m, demonstrating its suitability for data communication in marine environments. In the second part of the analysis, we examine the probabilities of data reception between static-node antennas at different heights and a terrestrial antenna at a specific height. Wave samples recorded in Playa Sisal, Yucatan, Mexico, are used for this analysis. The findings show a maximum reception probability of 94.5% between static nodes with an antenna at a height of 0 m and a 100% data reception probability between a static node and the terrestrial antenna when the static-node antennas are optimally positioned at a height of 1 m above sea level. Overall, this paper provides valuable insights into the application of RFID technology in marine environments for the UIoT, considering the minimization of impacts on marine fauna. The results suggest that by adjusting the characteristics of the RFID system, the proposed architecture can be effectively implemented to expand the monitoring area, considering variables both underwater and on the surface of the marine environment.


Assuntos
Dispositivo de Identificação por Radiofrequência , Dispositivo de Identificação por Radiofrequência/métodos , Redes de Comunicação de Computadores , Comunicação , Probabilidade , Tecnologia
4.
Entropy (Basel) ; 24(12)2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36554180

RESUMO

In this study, a high-performing scheme is introduced to delimit benign and malignant masses in breast ultrasound images. The proposal is built upon by the Nonlocal Means filter for image quality improvement, an Intuitionistic Fuzzy C-Means local clustering algorithm for superpixel generation with high adherence to the edges, and the DBSCAN algorithm for the global clustering of those superpixels in order to delimit masses' regions. The empirical study was performed using two datasets, both with benign and malignant breast tumors. The quantitative results with respect to the BUSI dataset were JSC≥0.907, DM≥0.913, HD≥7.025, and MCR≤6.431 for benign masses and JSC≥0.897, DM≥0.900, HD≥8.666, and MCR≤8.016 for malignant ones, while the MID dataset resulted in JSC≥0.890, DM≥0.905, HD≥8.370, and MCR≤7.241 along with JSC≥0.881, DM≥0.898, HD≥8.865, and MCR≤7.808 for benign and malignant masses, respectively. These numerical results revealed that our proposal outperformed all the evaluated comparative state-of-the-art methods in mass delimitation. This is confirmed by the visual results since the segmented regions had a better edge delimitation.

5.
J Med Syst ; 45(4): 40, 2021 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-33604697

RESUMO

In this study we propose a novel correction scheme that filters Magnetic Resonance Images data, by using a modified Linear Minimum Mean Square Error (LMMSE) estimator which takes into account the joint information of the local features. A closed-form analytical solution for our estimator is presented and it proves to make the filtering process far simpler and faster than other estimation techniques that rely on iterative optimization scheme and require multiple data samples. An experimental validation of our correction scheme was carried out through large scale experiments using both clinical and synthetic MR images, artificially corrupted with rician noise of σ varying from 1 to 40. These noisy images were filtered using our proposed method against the classical LMMSE, the Non-Local Means filter and the Nonlocality-Reinforced Convolutional Neural Networks (NRCNN) techniques. The results show an outstanding performance of our proposed method, given the fact that from σ ≈ 12 onwards, the proposed method outperforms all other methods. Another attention-grabbing feature of our method is that its Structural Similarity does not vary sharply [0.87, 0.95] across the σ spectrum as the other three techniques, which implies that this method can work on a wider range of deteriorated images than the rest of the techniques.


Assuntos
Aumento da Imagem/métodos , Razão Sinal-Ruído , Imageamento por Ressonância Magnética , Modelos Estatísticos
6.
PLoS One ; 15(10): e0237570, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33044975

RESUMO

Photo-identification (photo-id) is a method used in field studies by biologists to monitor animals according to their density, movement patterns and behavior, with the aim of predicting and preventing ecological risks. However, these methods can introduce subjectivity when manually classifying an individual animal, creating uncertainty or inaccuracy in the data as a result of the human criteria involved. One of the main objectives in photo-id is to implement an automated mechanism that is free of biases, portable, and easy to use. The main aim of this work is to develop an autonomous and portable photo-id system through the optimization of image classification algorithms that have high statistical dependence, with the goal of classifying dorsal fin images of the blue whale through offline information processing on a mobile platform. The new proposed methodology is based on the Scale Invariant Feature Transform (SIFT) that, in conjunction with statistical discriminators such as the variance and the standard deviation, fits the extracted data and selects the closest pixels that comprise the edges of the dorsal fin of the blue whale. In this way, we ensure the elimination of the most common external factors that could affect the quality of the image, thus avoiding the elimination of relevant sections of the dorsal fin. The photo-id method presented in this work has been developed using blue whale images collected off the coast of Baja California Sur. The results shown have qualitatively and quantitatively validated the method in terms of its sensitivity, specificity and accuracy on the Jetson Tegra TK1 mobile platform. The solution optimizes classic SIFT, balancing the results obtained with the computational cost, provides a more economical form of processing and obtains a portable system that could be beneficial for field studies through mobile platforms, making it available to scientists, government and the general public.


Assuntos
Nadadeiras de Animais/anatomia & histologia , Balaenoptera/anatomia & histologia , Aplicativos Móveis , Fotografação/métodos , Algoritmos , Animais , Bases de Dados Factuais , Processamento de Imagem Assistida por Computador/métodos , Processamento de Imagem Assistida por Computador/estatística & dados numéricos , Reconhecimento Automatizado de Padrão/métodos , Reconhecimento Automatizado de Padrão/estatística & dados numéricos , Fotografação/estatística & dados numéricos
7.
J Healthc Eng ; 2017: 8536206, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29158887

RESUMO

We develop a swift, robust, and practical tool for detecting brain lesions with minimal user intervention to assist clinicians and researchers in the diagnosis process, radiosurgery planning, and assessment of the patient's response to the therapy. We propose a unified gravitational fuzzy clustering-based segmentation algorithm, which integrates the Newtonian concept of gravity into fuzzy clustering. We first perform fuzzy rule-based image enhancement on our database which is comprised of T1/T2 weighted magnetic resonance (MR) and fluid-attenuated inversion recovery (FLAIR) images to facilitate a smoother segmentation. The scalar output obtained is fed into a gravitational fuzzy clustering algorithm, which separates healthy structures from the unhealthy. Finally, the lesion contour is automatically outlined through the initialization-free level set evolution method. An advantage of this lesion detection algorithm is its precision and its simultaneous use of features computed from the intensity properties of the MR scan in a cascading pattern, which makes the computation fast, robust, and self-contained. Furthermore, we validate our algorithm with large-scale experiments using clinical and synthetic brain lesion datasets. As a result, an 84%-93% overlap performance is obtained, with an emphasis on robustness with respect to different and heterogeneous types of lesion and a swift computation time.


Assuntos
Neoplasias Encefálicas/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Neuroimagem/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Algoritmos , Análise por Conglomerados , Bases de Dados Factuais , Lógica Fuzzy , Gravitação , Humanos , Interpretação de Imagem Assistida por Computador , Processamento de Imagem Assistida por Computador , Distribuição Normal , Radiocirurgia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...